

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 1853-1856

www.elsevier.com/locate/jeurceramsoc

Permittivity measurements at millimeter wave frequencies using dielectric rod resonator excited by NRD-guide

A. Nakayama*, H. Yoshikawa

R&D Center Kagoshima, Kyocera Corporation 1-4 Yamashita-cyo Kokubu, Kagoshima 899-4312, Japan

Available online 21 November 2005

Abstract

A method of measuring the relative complex permittivity ($\varepsilon_r = \varepsilon' - j\varepsilon''$, tan $\delta = \varepsilon''/\varepsilon'$) for low-loss dielectric materials at millimeter wave frequencies has been developed, using a dielectric rod resonator excited by the nonradiative dielectric waveguide (NRD-guide). Relative permittivity (ε') and loss factor (tan δ) of the rod specimen are determined by the resonant frequency (f_0) and unloaded Q-factor (Q_u) of a TE_{0m1} mode resonator. The effective conductivity (σ) of conducting plates for short-circuiting the rod resonator is determined using TE₀₂₁ and TE_{02 δ} mode sapphire resonators. Temperature dependence of ε' and tan δ of sapphire and cordierite ceramics were evaluated at 60 GHz. This method has been adopted as the Japanese Industrial Standard (JIS R 1660-3) and is being prepared for the IEC international standard. Several standardized specifications are presented.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Dielectric properties; Electrical conductivity; Al2O3; Substrates; Millimeter wave measurements

1. Introduction

We need a reliable method for measuring ε_r of the dielectric materials for designing devices used in millimeter wave communication or sensing systems. Several methods^{1–4} have been developed for measuring ε_r of the low-loss dielectric materials at the millimeter wave frequencies. Among these methods, a dielectric rod resonator method exited by the NRD-guide⁵ has an advantage in that excitation of resonance is very easy. The reason is that a dominant LSM mode of the NRD-guide can be easily coupled to the TE mode of the dielectric resonator.

We have developed a simple and accurate method for measuring ε_r at millimeter wave frequencies based on the dielectric rod resonator excited by NRD-guide.⁶ The values of ε' and tan δ are determined using the TE_{0m1} (m = 1, 2, 3) mode resonator. The TE_{0m1} mode resonator allows us to achieve stable measurements, and accurate and simple calculations for ε' and tan δ by analytic expression. The effective conductivity σ of the conducting plates is determined using TE₀₂₁ and TE_{02 δ} mode sapphire resonators.

2. Theory and measurement formulas

2.1. Relative permittivity ε' and loss factor tan δ

The values of ε' and tan δ of the rod specimen are determined using the TE_{0m1} mode resonator, as shown in Fig. 1a for m = 2. A dielectric rod with diameter (*d*) and height (*h*) is short-circuited at both ends by two parallel conducting plates.

The values of ε' is calculated from the measured f_0 , d and the space (h_c) between the upper and lower conducting plates:

$$\varepsilon' = \left(\frac{\lambda_0}{\pi d}\right)^2 (u^2 + v^2) + 1 \tag{1}$$

where

$$v^{2} = \left(\frac{\pi d}{\lambda_{0}}\right)^{2} \left[\left(\frac{\lambda_{0}}{2h_{c}}\right)^{2} - 1 \right]$$
(2)

Here, $\lambda_0 = c/f_0$ is the free space resonance wavelength and *c* is the velocity of light. A formula for *u* is given elsewhere.^{6,7}

Next, $\tan \delta$ is calculated from the measured Q_u :

$$\tan \delta = \frac{A}{Q_{\rm u}} - BR_{\rm s} = \frac{A}{Q_{\rm u}} - \frac{B'}{\sqrt{\sigma_{\rm r}}}$$
(3)

^{*} Corresponding author.

 $^{0955\}text{-}2219/\$$ – see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.013

Fig. 1. Configuration of dielectric resonator for measuring ε_r and σ_r . Value of ε_r is measured using (a) and σ_r is measured using (a) and (b).

where

$$R_{\rm s}(\Omega) = \sqrt{\frac{\pi f_0 \mu}{\sigma}} = \sqrt{\frac{\pi f_0 \mu}{\sigma_0 \sigma_{\rm r}}} \tag{4}$$

Here, R_s and σ are the surface resistance and the effective conductivity of conducting plates, respectively. The relative conductivity is defined as $\sigma_r = \sigma/\sigma_0$ ($\sigma_0 = 5.8 \times 10^7$ S/m). Furthermore, μ is the permeability and $\mu = \mu_0 = 4\pi \times 10^{-7}$ for non-magnetic conducting plates. Formulas for *A* and *B* are given elsewhere.^{6,7}

2.2. Determination of relative conductivity σ_r of conducting plates

The value of σ_r of the conducting plates must be accurately measured, to determine tan δ of low-loss dielectric specimen by (3). The TE₀₂₁ and TE_{02 δ} mode dielectric rod resonators in Fig. 1, called "standard resonators", are used for measuring σ_r . Each standard resonator is made of sapphire single crystals with the same ε_r . They are designed to have the same f_0 .

The standard TE_{02 δ} resonator has a large dimension ratio (*d/h*). The conductor loss of the TE_{02 δ} resonator is larger than that of the TE_{02 δ} standard resonator, since the electromagnetic field in the TE_{02 δ} resonator is concentrated near the surface of the lower conductor. High accuracy measurement of σ_r is achieved by enlarging the difference in the conductor loss of the two resonators. While $f_{01} = f_{0\delta}$, Q_{u1} is higher than $Q_{u\delta}$, where subscripts 1 and δ denote each standard resonator.

The value of σ_r can be calculated from the measured f_0 (= $f_{01} = f_{0\delta}$), Q_{u1} and $Q_{u\delta}$:

$$\sigma_{\rm r} = \frac{\sigma}{\sigma_0} = \pi \mu f_0 \left[\frac{Q_{\rm u1} Q_{\rm u\delta}}{G_1 G_\delta} \frac{G_1 P_{\rm e1} - G_\delta P_{\rm e\delta}}{Q_{\rm u1} P_{\rm e1} - Q_{\rm u\delta} P_{\rm e\delta}} \right]^2 / \sigma_0 \tag{5}$$

where partial electric energy filling factors (P_{e1}) and $(P_{e\delta})$, and geometric factor (G_1) and (G_{δ}) of the resonators are defined elsewhere.⁶ An example of their values is shown in Table 1.

Furthermore, $\tan \delta$ of the standard resonators can be calculated:

$$\tan\delta_1 = \tan\delta_\delta = \frac{1}{Q_{u1}Q_{u\delta}} \times \frac{G_1Q_{u\delta} - G_\delta Q_{u1}}{G_1P_{e1} - G_\delta P_{e\delta}}$$
(6)

3. Preparation of dielectric specimen

Typical specifications of the standard rod resonators are described. Each rod consists of the sapphire with low tan δ . The axis of the each rod is parallel to the *C*-axis of sapphire. Table 1 shows *d*, *h*, *h*_c, *P*_e and *G* of the standard sapphire rods with $\varepsilon' = 9.40$ perpendicular to the *C*-axis, for measuring σ_r at 60 GHz. The factors *P*_{e1} and *G*₁ are related with *A* and *B* in (3) by *P*_{e1} = 1/*A* and *G*₁ = *A*/*B*. In contrast, calculations for factors *P*_{e\delta} and *G*_{\delta} obtained by axis symmetric FEM calculations.

The TE₀₁₁, TE₀₂₁ and TE₀₃₁ mode rod resonators are used to measure ε' and tan δ , for materials with $\varepsilon' = 2-4$, $\varepsilon' = 4-20$ and $\varepsilon' = 20-30$. Fig. 2 shows desirable values of diameter (*d*) of the rod specimen for 60 GHz measurement as a function of ε' .

4. Measurement apparatus

Two types of apparatus were used, as shown in Fig. 3. The dielectric rod resonator was coupled equally to the input and output NRD-guide. Space between the rod and the NRD-guide was adjusted so that insertion loss (IL_0) at f_0 was 20–25 dB. Dielectric strips of the NRD-guide with a width of 2.00 mm were made of Rexolite-1422 (cross-linked styrene copolymer) with $\varepsilon' = 2.5$,

Table 1

Dimensions, partial electric energy filling factor $P_{\rm e}$ and geometric factor G for standard sapphire rods for measuring $\sigma_{\rm r}$ at 60 GHz.

Space, h_c (mm)	TE ₀₂₁				TE _{02δ}			
	Diameter, d (mm)	Height, <i>h</i> (mm)	Pel	$G_{1}\left(\Omega ight)$	d (mm)	h (mm)	$P_{e\delta}$	$G_{\delta}\left(\Omega ight)$
2.25	3.14	2.20–2.25	0.915	1182	4.49	0.80	0.906	409

Fig. 2. Diameter *d* of dielectric specimen for measuring ε_r at 60 GHz, for height h = 2.20-2.25 mm and space $h_c = 2.25$ mm.

for 60 GHz measurements. The apparatus had transducers from the NRD-guide to the waveguide. The end of the dielectric strip was sharpened in the transducer.

A-type apparatus was used for measuring the temperature dependence of tan δ , since the TE_{02 δ} standard resonator is easily constituted. The upper conducting plate was inset in the con-

ductors of NRD-guide in the A-type apparatus. The apparatus had a small air gap (g) between the upper conducting plate and the dielectric specimen. The calculations of ε' by (1) and of tan δ by (3) are accurate for $g < 50 \,\mu\text{m}$. The error of $\Delta \varepsilon'/\varepsilon'$ for $g = 50 \,\mu\text{m}$ is about 0.01% and is negligibe.⁶ In contrast, B-type apparatus was used for measuring the temperature dependence of ε' . The upper conducting plate was put on the specimen in this apparatus.

The apparatus was connected to a scalar network analyzer HP-8757 system. The Q_u was calculated from f_0 , the half-power band width $f_H - f_L$ and IL_0 :

$$Q_{\rm u} = \frac{f_0 / (f_H - f_L)}{(1 - 10^{-IL_0/20})} \tag{7}$$

5. Results

The temperature (*T*) dependence of ε_r of sapphire and cordierite ceramics⁸ was evaluated at 60 GHz by this method. First, f_0 was measured as a function of *T* using the B-type apparatus. Then ε' was calculated from the f_0 . Fig. 4a shows ε' and f_0 of the TE₀₂₁ standard sapphire rod ($d=3.130\pm0.005$ mm, $h=2.250\pm0.001$, $\alpha=5.8$ ppm/°C). Here, α is the coefficient of thermal expansion. The values ε' of the sapphire increased linearly with increasing *T*. The first and second

Fig. 3. Measurement apparatus.

Fig. 4. Temperature dependence measurements of ε_r of sapphire crystals and cordierite ceramics, and of σ_r of conducting plates.

measurements were in agreement. The temperature coefficient of permittivity ($TC\varepsilon$) of the sapphire was calculated to be $86.4 \pm 0.8 \text{ ppm/}^{\circ}\text{C}$, which was in good agreement with a result reported elsewhere.⁹ Fig. 4b shows measurements of cordierite ceramics rod (d=4.803, h=2.253, $\alpha=0.5$). The values ε' of the cordierite rod also increased linearly with increasing *T*. The value $TC\varepsilon$ was calculated to be $56.9 \pm 0.3 \text{ ppm/}^{\circ}\text{C}$.

Next, to determine σ_r of the conducting plates of Cu and tan δ of the standard sapphire, Q_{u1} and $Q_{u\delta}$ of standard sapphire resonators was measured twice against *T* as shown in Fig. 4c, using the A-type apparatus with $H_c = 2.279$ mm. Fig. 4d and 4e show σ_r of the conducting plates and tan δ of the standard sapphire calculated by Q_{u1} and $Q_{u\delta}$. The value of σ_r decreased with increasing *T*. The value σ_r was 87.4% at 20 °C. The value tan δ of the standard sapphire increased with increasing *T*. The value $f_0/\tan \delta = 1.04 \times 10^6$ GHz at 20 °C was in agreement with a result reported elsewhere.⁶ Furthermore, Fig. 4f shows Q_u and tan δ of cordierite ceramics. This variation of tan δ with *T* was relatively small.

6. Conclusion

A method of measuring ε_r at millimeter wave frequencies has been developed, using a dielectric resonator excited by the NRD-guide. Typical specifications of the rod specimen for ε_r measurements and of the standard sapphire rods for measuring σ_r at 60 GHz were presented. The temperature dependence of ε_r of sapphire and cordierite ceramics was accurately evaluated at 60 GHz by this method. The repeated measurements showed the error of $TC\varepsilon$ was less than 1 ppm/°C.

References

- 1. Cullen, A. L. and Yu, P. K., The accurate measurement of permittivity by means of an open resonator. *Proc. Roy. Soc. A*, 1971, **325**, 493–509.
- Kobayashi, Y. and Shimizu, T., Millimeter wave measurement of temperature dependence of complex permittivity of dielectric plates by a cavity resonance method. *IEEE MTT-S Int. Microwave Symp. Digest*, 1999, 1885–1888.
- Y. Ishikawa, T. Tanizaki, A. Saitoh, and T. Yoneyama, Complex permittivity measurement of dielectric materials using NRD guide at millimeter wave length. *IEICE Trans. C-I Vol. J78-C-I*, *9*, 1995, pp. 418–429 (in Japanese).
- Krupka, J., Derzakowski, K., Abramowicz, A., Tobar, M. E. and Geyer, R. G., Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. *IEEE Trans. Microwave Theory Tech.*, 1999, 47, 752–759.
- Yoneyama, T. and Nishida, S., Nonradiative dielectric waveguide for millimeterwave integrated circuit. *IEEE Trans. Microwave Theory Tech.*, 1981, 29, 1188–1192.
- Nakayama, A., Fukuura, A. and Nishimura, M., Millimeter-wave measurement of complex permittivity using dielectric rod resonator excited by NRD-guide. *IEEE Trans. Microwave Theory Tech.*, 2003, **51**, 170–177.
- Kobayashi, Y. and Katoh, M., Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. *IEEE Trans. Microwave Theory Tec.*, 1985, 33, 586–592.
- Hiramatsu, N., Kishino, T., Okamura, T., Kii, H. and Sagala, D. A., Nonradiative dielectric waveguide using cordierite ceramics. *IEEE MTT-S Int. Microwave Symp. Digest*, 1999, 1785–1788.
- Kobayashi, Y. and Tamura, H., Round robin test on a dielectric resonator method for measuring complex permittivity at microwave frequency. *IEICE Trans. ELECTRON. E77-C*, 1994, 6, 882–887.